If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-15n-8=0
a = 3; b = -15; c = -8;
Δ = b2-4ac
Δ = -152-4·3·(-8)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{321}}{2*3}=\frac{15-\sqrt{321}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{321}}{2*3}=\frac{15+\sqrt{321}}{6} $
| 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 3n^2-15n-8=0 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | 4a-1/6=a-5/3 | | -2=p/9-3 | | 1/2x-8=1/2x-16 | | 2(x=10)=5(x-15) | | 2(x=10)=5(x-15) | | 2(x=10)=5(x-15) | | -4-9x=-5-3x | | -4-9x=-5-3x | | 24c+10=17c+10 | | x4+32x-60=0 | | x4+32x-60=0 | | x4+32x-60=0 | | 4^80=n | | 4^80=n | | 4^80=n | | 4^80=n | | 4^80=n | | 7r+5=2r-15 |